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Measuring billiard eigenfunctions with arbitrary trajectories

Debabrata Biswas
Theoretical Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India

~Received 14 December 2001; published 13 February 2003!

We propose a method of measuring approximate quantum eigenfunctions in polygonalized billiard geom-
etries, based on a quasiclassical evolution operator having a~smoothened! Perron-Frobenius kernel modulated
by a phase arising from quantum considerations. Using a plane wave ansatz, we show that the condition under
which this is an eigenfunction of the quasiclassical operator is identical to the condition for it to be an
eigenfunction of the Schro¨dinger equation for polygonalized billiards. Finally, we demonstrate this technique
by determining the quasiclassical eigenfunctions of the polygonalized stadium billiard using arbitrary trajec-
tories and comparing this with the exact quantum stadium eigenfunctions.
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The quantum billiard problem consists of determining t
eigenvalues and eigenfunctions of the Helmholtz equa
¹2c(q)1k2c(q)50 with c(q)50 on the billiard boundary
]B ~Dirichlet boundary condition!. This simple wave equa
tion arises in various contexts and has been used extens
to test ideas of quantum chaos. It can describe acou
waves, modes in microwave cavities and has relevanc
studies on quantum dots, where the motion of electrons
be regarded as ‘‘free’’ inside an enclosure. The problem
analytically tractable only for the small subset of ‘‘inte
grable’’ boundaries for which the classical dynamics is re
lar. For other enclosures, the eigenstates must be comp
numerically and a number of efficient ‘‘boundary’’ method
exist that allow us to study the eigenvalues and eigenfu
tions.

Of particular interest is the determination of approxima
quantum eigenstates using classical quantities. While the
quantum theory of Bohr and co-workers works only for reg
lar or integrable systems, modern semiclassical theories h
respondend to the challenge posed by chaotic classica
namics and the successful quantization of the helium a
@1# points to its success. The aim, however, is not necess
linked to the development of a cheap substitute for the co
puter intensive numerical methods that determine the e
quantum states. While this is a desirable consequence, s
classical studies endeavor to provide an understanding o
quantum phenomenon in terms of classical objects that
are so familiar with. Modern semiclassical methods have
deed furthered our understanding of the quantum-class
correspondence. Thus, we are now aware of the dualit
quantum eigenenergies and classical periodic orbits—a r
tionship that now forms the cornerstone of most semicla
cal theories@2#. The study of ‘‘scars’’ has also revealed th
structure of quantum eigenfunctions and classical trajecto
have even been used to construct semiclassical eigenf
tions of chaotic systems@3#. Quantum states can, thus, b
contemplated in classical terms as a first approximation w
corrections providing its true quantum nature.

In this context, a question that may be asked is the
lowing: What is the degree of classical information that
required in order to extract a first approximation of a qua
tum state? This is especially pertinent when the system
question is chaotic or mixed with islands of regularity inte
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spersed in the chaotic sea. Since the quantum state~or the
quasiprobability distributions constructed out of them! can
essentially resolve phase space structures of the size
Planck cell, is information finer than that redundant? F
billiards, the de Broglie wavelengthl, provides a relevant
length scale that can be used effectively to probe the bou
ary of the enclosure. If a smooth billiard boundary is polyg
nalized such that the short time classical dynamics is w
approximated, the two billiards are semiclassically equi
lent, provided,l is larger than the average length of edges
the polygon@4#. Thus, instead of the full chaotic dynamics
the stadium billiard, one may as well consider the dynam
of its polygonal counterpart for a given de Broglie wav
length @5#. This idea has, however, not been used to de
minesemiclassicaleigenvalues or eigenfunctions. Indeed,
most accounts, a polygonalized approach to semiclassic
bound to be even more difficult since periodic orbit quan
zation of polygons has proved largely unsuccessful@6# and it
is generally believed that diffractive contributions must
included even for obtaining a first approximation of a p
lygonal quantum state@7,8#.

The polygonalization approach is, however, aptly sui
for a recently developed time domain technique@9,10# of
determining quantum eigenvalues in marginally stable
liard geometries~which includes polygonalized ones!. The
algorithm involves shooting arbitrary trajectories in vario
directions from a point interior to the billiard~call it q8) and
at each time step, recording the fraction of trajectories t
are in ane neighborhood of a pointq, weighted by a phase
arising from quantum considerations. The peak positions
the power spectrum of this weighted fractionF(t) are related
to the quantum eigenvalues and as we shall show here
heights of the peaks are a measure of the quantum eigenf
tions at the pointq.

The arbitrary trajectory quantization method outlin
above is based on a quasiclassical@11# propagator

L qc
t ~w!+f~q!5E dq8 d„q2q8t~w!…e2 in(t)p/2 f~q8!,

~1!

whereq8t(w) is the position at timet of a trajectory which
starts atq8 (t50) on an invariant surface labeled byw and
the energyE. The phasen(t)5n„q8t(w)… depends on the
©2003 The American Physical Society08-1
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caustic structure of the trajectory and is identical to the ph
in the semiclassical propagator@2#. For billiards, n(t)
52n(t), wheren(t) is the number of reflections suffered b
the trajectoryq8t(w). When n(t) is identically zero~as in
case of Neumann boundary conditions!, L qc

t (w) reduces to
the ~classical! Perron-Frobenius operator on the (E,w) in-
variant surface.

Note that marginally stable billiards have an invariant s
face labeled by two constants of motion one of which is
energyE @12#. We denote here the second constant byw. For
the circle billiardw is a measure of the angular momentu
while for a rectangle billiard,w is a measure of the linea
momentum (p cosw,psinw) and can be taken as the ang
that the unfolded trajectory makes with theX axis. In case of
rational polygonal billiards too,w can be taken to be a mea
sure of the linear momentum even though, it is not directl
conserved quantity. However, in an unfolded picture wher
family of trajectories can be denoted by a single strai
band,w is conserved and serves to label families of traj
tories.

The full quasiclassical evolution operator is defined as

L qc
t +f~q!5E dwL qc

t ~w!

5E dq8H E dwd~q2q8t~w!!e2 in(t)p/2J f~q8!

5E dq8Kqc~q,q8,t !f~q8!, ~2!

whereKqc is the quantity in$%. The operatorL qc
t takes into

account the entire constant energy surface by summing~in-
tegrating! over all w invariant surfaces.

The motivation in constructing the quasiclassical opera
as in Eq.~1! is as follows. For polygonal billiards, the trac
of the classical Perron-Frobenius operator is related to
trace of the semiclassical propagator whenn(t)50. For Di-
richlet boundary condition, this correspondence can be
stored if the kernel contains the phasee2 in(t)p/2 @9,10#. This
gives rise to a quasiclassical propagator.

In the following, we shall first establish that the eige
functions of L qc

t for polygonalized geometries are als
eigenfunctions of the Schro¨dinger equation. We shall demon
strate this numerically for a polygonalized stadium billia
by constructing the quasiclassical kernelKqc(q,q,t) using
arbitrary trajectories and use this to determine the eigenfu
tion intensities.

As an illustrative example, consider a particle in a on
dimensional box and consider the evolution of the quant
eigenfunction~Dirichlet boundary conditions! cn(q)5eiknq

2e2 iknq, kn5np/L . Its time evolution in quantum mechan
ics is simplye2 iEnt/\c(q), whereEn5\2kn

2/2m. Its quasi-
classical evolution for positive velocity,L qc

t (1)+cn(q), is
given by

~eiknq2t(1v)2e2 iknq2t(1v)!e2 ipn[q2t(1v)] , ~3!
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wheren@q2t(1v)# is the number of reflections suffered by
trajectory in time2t with initial positionq and initial veloc-
ity 1v. Similarly, L qc

t (2)+cn(q) is

~eikn[q2t(2v)]2e2 ikn[q2t(2v)] !e2 ipn[q2t(2v)] , ~4!

with the2 sign inL qc
t (2) denoting negative velocity. Note

that the flow is such that the velocity changes sign at ev
reflection from the walls atq50 andq5L, while n(t) in-
crements by one at each of these instants. For the fl
q2t(1v), the reflections occur attn

15(q1nL)/v so that for
t0

1,t,t1
1 , q2t(1v)5v(t2t0

1)5vt2q. Similarly, for the
flow q2t(2v), the reflections occur attn

25(L2q1nL)/v
and for t0

1,t,t1
1 , q2t(2v)5L2v(t2t0

2)52L2vt2q.
It follows, hence, that

L qc
t ~6 !+cn~q!5eikn(q 7 vt)2e2 ikn(q 7 vt) ~5!

for all t. Finally, noting that there are only two possible va
ues of w ~linear momentum! in this one-dimensional ex
ample, the full quasiclassical operator is expressed asL qc

t

5L qc
t (1)1L qc

t (2). It follows that

L qc
t +cn~q!52cos~knvt !cn~q!. ~6!

In other words, the quantum eigenfunction is also an eig
function of the full quasiclassical evolution operatorL qc

t

@13#.
This is true for general polygonalized billiards as well a

we shall establish this by showing that the condition un
which a plane wave superposition is a quantum~semiclassi-
cal! eigenfunction is identical to the condition for this plan
wave superposition to be an eigenfunction ofL qc

t .
For polygonalized billiards, the semiclassical wave fun

tion can be expressed as

c~q!5(
j 51

M

Aje
ik cos(m j )x1 ik sin(m j )y, ~7!

whereAj are constants@14# and the number of termsM in
the expansion is determined by closure of the wave ve
kW5(k cosmj ,ksinmj) under reflection from the edges@15#.
For this finite superposition of plane waves, the bound
conditionc(q)50 on ]B can be satisfied if the waves van
ish in pairs with an incident wave giving rise to a reflect
wave. Thus, on thel th segmenty5alx1bl , we must have

Aje
i (k cosm j 1alk sin m j )x1 iblk sin m j

1Aj 8e
i (k cosm j 81alk sin m j 8)x1 iblk sin m j 850. ~8!

Assuming thatm j 8 is related tom j through the laws of re-
flection, it is easy to show that

cosm j1alsinm j5cosm j 81alsinm j 8 . ~9!

Thus, Eq.~8! reduces to

Aje
iblk sin m j1Aj 8e

iblk sin m j 850, ~10!
8-2
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FIG. 1. ~a! A quasiclassical
bouncing ball eigenfunction of the
polygonalized stadium and~b! its
quantum counterpart in the
smooth stadium.
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where m j 85p2m j12u l and u l is the angle between th
positive X axis and the outward normal to thel th line seg-
ment.

Note that for each of theK segments on the boundary, th
j th wave has, in general, a different reflected wave as a co
terpart so that Eq.~10! givesK different expressions forAj .
In general~barring exceptions such as the rectangle billiar!,
these ‘‘boundary conditions’’ can be satisfied only appro
mately as we shall argue below. Recall that for the numer
determination of exact eigenvalues using a plane wave b
the boundary is discretized (N points! and an appropriate
measure~such as a determinant! is used to determine th
eigenstates which satisfy the boundary condition at th
points. Convergence can be achieved by increasingN so that
asN→`, the boundary condition is satisfied exactly. In co
trast, the number of terms in Eq. 7 is fixed. Thus, if the ex
eigenfunction contains additional plane waves, the bound
condition will be satisfiedapproximatelyand the plane wave
expansion of Eq.~7! can only give an approximate quantu
eigenfunction.

We shall now establish that the~finite! plane wave super
position @Eq. 7# is also an approximate eigenfunction of th
quasiclassical evolution operator provided the set of ‘‘qu
tization’’ conditions given by Eq.~10! are satisfied.

Consider, therefore, the plane wave superposition of
~7!. Its quasiclassical evolution is given by

L qc
t ~w!+cn~q!5(

j 51

M

Aje
ikxx2t(w)1 ikyy2t(w)e2 in(t), ~11!

where kx5k cos(mj), ky5k sin(mj), while x2t(w) and
y2t(w) denote the flow at time2t with initial position (x,y)
and velocity (v cosw,v sinw). For short times, this is given
by

L qc
t ~w!+cn5(

j 51

M

Aje
ikx(x2v coswt)1 iky(y2v sin wt), ~12!

since n(t)50. We shall first determine the evolution of
single wave after reflection from one of the segmentsy
5alx1bl . For the flow,„x2t(w),y2t(w)…, reflection from
the line segment takes place att05(x2x0)/(v cosw)5(y
2y0)/(v sinw), where (x0 ,y0) is the point of impact. The
flow at a timet after the reflection is given by

x2t~w!5x~ t !5x01v cos~w22u l !~ t2t0!,

y2t~w!5y~ t !5y01v sin~w22u l !~ t2t0!. ~13!
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It is easy to verify that after one reflection from the segm
y5alx1bl , the waveAje

ik cosmjx1k sin mjy evolves quasiclas-
sically to

Aj 8e
k cosm j 8(x2v coswt)1k sin m j 8(y2v sin wt), ~14!

wherem j 85p2m j12u l and

Aje
ikblsin m j1Aj 8e

ikblsin m j 850. ~15!

Thus, after one reflection, the finite plane wave superposi
assumes the form for smallt provided the reflected waves ar
included in the superposition and the ‘‘quantization con
tions’’ are ~approximately! satisfied for a given value ofkn .
It follows that cn(q) is an ~approximate! eigenfunction of
the full quasiclassical evolution operator:

L qc
t +cn~q!5E dw Lqc~w!cn~q! ~16!

5E dw e2 iknvt cos(w2m j )(
j

Aje
iSj (kn)

~17!

52pJ0~knvt ! cn~q!, ~18!

where Sj (kn)5kncos(mj)x1knsin(mj)y and J0 is the Bessel
function. In summary then,a finite plane wave superpositio
can be an approximate semiclassical and a quasiclass
eigenfunction under identical conditions.

We shall now demonstrate our result for a stadium billia
consisting of two parallel straight segments of length
joined on either end by a semicircle of unit radius. For t
evaluation of the quasiclassical eigenfunctions, we shall c
sider a polygonalized enclosure, where each semicircl
replaced by 12 straight edges of equal length. In order
determine the quasiclassical eigenfunctions, we shall
evaluate a smoothened quasiclassical kernel

Kqc~q,q8,t !5E dw de„q2q8t~w!…e2 ipn[q8t(w)]

5(
n

cn~q!cn* ~q8!Ln~ t ! ~19!

as a function of time (de is a smoothenedd function!. This is
achieved by shooting trajectories from a pointq8 at various
angles and evaluating the fraction of trajectories in a cel
size e @19# at q, weighted by the phasee2 ipn[q8t(w)] . Since
8-3
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FIG. 2. ~a! A quasiclassical
eigenfunction peaked along theX
axis and~b! its quantum counter-
part.
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Ln52pJ0(knvt), for v51, a Fourier transform of
Kqc(q,q8,t) has peaks atk5kn and the heights are propo
tional to cn(q).

Note that the smoothening of thed function kernel is
essential for polygonalized billiards and shows up natura
in an alternate approach involving the trace of the quasic
sical and semiclassical propagators@20#. In the present for-
malism involving plane waves, smearing of the kernel lea
to a modified quantization condition for the quasiclassi
eigenfunctions. We shall however ignore these complicati
and merely remark that the parametere is O(1/k) @10#.

Figure 1~a! shows a ‘‘bouncing ball’’ quasiclassical eigen
function intensityucn(q)u2 at k510.97 in the quarter sta
dium, while the corresponding quantum eigenfunction in
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stadium atk511.05 is shown in Fig. 1~b!. An example of a
quasiclassical eigenfunction atk54.02 peaked along theX
axis is shown in Fig. 2~a! along with its quantum conterpar
at k54.38. The quasiclassical eigenfunction clearly provid
a first approximation of the quantum eigenfunction in bo
cases. Eigenfunctions of other billiards including triang
have also been obtained. Details of this work will be pu
lished elsewhere. In conclusion, we have demonstrated
the quasiclassical eigenfunctions determined using arbit
trajectories in a polygonalized chaotic enclosure, appro
mate the quantum eigenfunctions of the smooth billiard.
have also shown that a finite plane wave expansion is
approximate eigenfunction of the quantum and quasiclass
evolution operators under identical conditions.
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